Canine atlantoaxial optimal safe implantation corridors – description and validation of a novel 3D presurgical planning method using OsiriX™

نویسندگان

  • Guillaume Leblond
  • Luis Gaitero
  • Noel M. Moens
  • Alex zur Linden
  • Fiona M. K. James
  • Gabrielle Monteith
  • John Runciman
چکیده

BACKGROUND Canine ventral atlantoaxial (AA) stabilization is most commonly performed in very small dogs and is technically challenging due to extremely narrow bone corridors. Multiple implantation sites have been suggested but detailed anatomical studies investigating these sites are lacking and therefore current surgical guidelines are based upon approximate anatomical landmarks. In order to study AA optimal safe implantation corridors (OSICs), we developed a method based on computed tomography (CT) and semi-automated three-dimensional (3D) mathematical modelling using OsiriX™ and Microsoft®Excel software. The objectives of this study were 1- to provide a detailed description of the bone corridor analysis method and 2- to assess the reproducibility of the method. CT images of the craniocervical junction were prospectively obtained in 27 dogs and our method of OSIC analysis was applied in all dogs. For each dog, 13 optimal implant sites were simulated via geometrical simplification of the bone corridors. Each implant 3D position was then defined with respect to anatomical axes using 2 projected angles (ProjA). The safety margins around each implant were also estimated with angles (SafA) measured in 4 orthogonal directions. A sample of 12 simulated implants was randomly selected and each mathematically calculated angle was compared to direct measurements obtained within OsiriX™ from 2 observers repeated twice. The landmarks simulating anatomical axes were also positioned 4 times to determine their effect on ProjA reproducibility. RESULTS OsiriX could be used successfully to simulate optimal implant positions in all cases. There was excellent agreement between the calculated and measured values for both ProjA (ρc = 0.9986) and SafA (ρc = 0.9996). Absolute differences between calculated and measured values were respectively [ProjA = 0.44 ± 0.53°; SafA = 0.27 ± 0.25°] and [ProjA = 0.26 ± 0.21°; SafA = 0.18 ± 0.18°] for each observer. The 95 % tolerance interval comparing ProjA obtained with 4 different sets of anatomical axis landmarks was [-1.62°, 1.61°] which was considered appropriate for clinical use. CONCLUSIONS A new method for determination of optimal implant placement is provided. Semi-automated calculation of optimal implant 3D positions could be further developed to facilitate preoperative planning and to generate large descriptive anatomical datasets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computed Tomographic Analysis of Ventral Atlantoaxial Optimal Safe Implantation Corridors in 27 Dogs.

Objectives Ventral atlantoaxial stabilization techniques are challenging surgical procedures in dogs. Available surgical guidelines are based upon subjective anatomical landmarks, and limited radiographic and computed tomographic data. The aims of this study were (1) to provide detailed anatomical descriptions of atlantoaxial optimal safe implantation corridors to generate objective recommendat...

متن کامل

A rapid and reliable procedure to localize subdural electrodes in presurgical evaluation of patients with drug-resistant focal epilepsy.

OBJECTIVES To evaluate a novel method for localization of subdural electrodes in presurgical assessment of patients with drug-resistant focal epilepsy. METHODS We studied eight consecutive patients with posterior epilepsy in whom subdural electrodes were implanted for presurgical evaluation. Electrodes were detected on post-implantation brain CT scans through a semiautomated procedure based o...

متن کامل

Validation of Optimum ROI Size for 123I-FP-CIT SPECT Imaging Using a 3D Mathematical Cylinder Phantom

Objective(s): The partial volume effect (PVE) of single-photon emission computed tomography (SPECT) on corpus striatum imaging is caused by the underestimation of specific binding ratio (SBR). A large ROI (region of interest) set using the Southampton method is independent of PVE for SBR. The present study aimed to determine the optimal ROI size with contrast and SBR for striatum images and val...

متن کامل

A Pipeline for 3D Multimodality Image Integration and Computer-assisted Planning in Epilepsy Surgery

Epilepsy surgery is challenging and the use of 3D multimodality image integration (3DMMI) to aid presurgical planning is well-established. Multimodality image integration can be technically demanding, and is underutilised in clinical practice. We have developed a single software platform for image integration, 3D visualization and surgical planning. Here, our pipeline is described in step-by-st...

متن کامل

Improved planning of endoscopic sinonasal surgery from 3-dimensional images with Osirix® and stereolithography.

INTRODUCTION AND OBJECTIVES The high variability of sinonasal anatomy requires the best knowledge of its three-dimensional (3D) conformation to perform surgery more safely and efficiently. The aim of the study was to validate the utility of Osirix® and stereolithography in improving endoscopic sinonasal surgery planning. METHODS Osirix® was used as a viewer and Digital Imaging and Communicati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2016